

NPN Silicon Epitaxial Transistor

BCP56 Series

These NPN Silicon Epitaxial transistors are designed for use in audio amplifier applications. The device is housed in the SOT-223 package, which is designed for medium power surface mount applications.

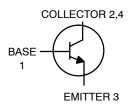
Features

- High Current: 1.0 A
- The SOT-223 package can be soldered using wave or reflow. The formed leads absorb thermal stress during soldering, eliminating the possibility of damage to the die
- Available in 12 mm Tape and Reel
 Use BCP56T1G to Order the 7 inch/1000 Unit Reel
 Use BCP56T3G to Order the 13 inch/4000 Unit Reel
- PNP Complement is BCP53T1G
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Collector-Base Voltage	V _{CBO}	100	Vdc
Emitter-Base Voltage	V _{EBO}	5	Vdc
Collector Current	Ic	1	Adc
Collector Current - Peak (Note 1)	I _{CM}	2	Adc
Total Power Dissipation @ T _A = 25°C (Note 2) Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to 150	°C

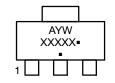
THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient (surface mounted)	$R_{ heta JA}$	83.3	°C/W
Maximum Temperature for Soldering Purposes Time in Solder Bath	TL	260 10	°C Sec

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1

- 1. Reference SOA curve.
- 2. Device mounted on a FR-4 glass epoxy printed circuit board 1.575 in x 1.575 in x 0.0625 in; mounting pad for the collector lead = 0.93 sq in.


MEDIUM POWER NPN SILICON HIGH CURRENT TRANSISTOR SURFACE MOUNT

SOT-223 CASE 318E STYLE 1

MARKING DIAGRAM

XXXXX = Specific Device Code A = Assembly Location

Y = Year W = Work Week • Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristics		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			•			
Collector–Base Breakdown Voltage ($I_C = 100 \mu Adc, I_E = 0$)		V _{(BR)CBO}	100	-	_	Vdc
Collector–Emitter Breakdown Voltage (I _C = 1.0 mAdc, I _B = 0)		V _{(BR)CEO}	80	-	_	Vdc
Emitter–Base Breakdown Voltage ($I_E = 10 \mu Adc, I_C = 0$)		V _{(BR)EBO}	5.0	-	_	Vdc
Collector-Base Cutoff Current $(V_{CB} = 30 \text{ Vdc}, I_E = 0)$		I _{CBO}	-	-	100	nAdc
Emitter-Base Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)		I _{EBO}	-	-	10	μAdc
ON CHARACTERISTICS (Note 3)			•		'	
DC Current Gain (I _C = 5.0 mA, V _{CE} = 2.0 V) (I _C = 150 mA, V _{CE} = 2.0 V)	All Part Types BCP56 BCP56-10 BCP56-16	h _{FE}	25 40 63 100	- - -	- 250 160 250	-
$(I_C = 500 \text{ mA}, V_{CE} = 2.0 \text{ V})$	All Types		25	_	-	
Collector–Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc)		V _{CE(sat)}	_	-	0.5	Vdc
Base–Emitter On Voltage (I _C = 500 mAdc, V _{CE} = 2.0 Vdc)		V _{BE(on)}	-	-	1.0	Vdc
SWITCHING CHARACTERISTICS						
Rise Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA})$		t _r	-	14	_	ns
Delay Time (V _{CC} = 30 Vdc, I _C = 150 mA, I _{B1} = 15 mA)		t _d	-	9	-	ns
Storage Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA}, I_{B2} = 15 \text{ mA})$		t _s	-	714	-	ns
Fall Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA}, I_{B2} = 15 \text{ mA})$		t _f	-	58	_	ns
DYNAMIC CHARACTERISTICS						
Current-Gain - Bandwidth Product (I _C = 10 mAdc, V _{CE} = 5.0 Vdc, f = 35 MHz)		f _T	-	130	-	MHz

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%

TYPICAL ELECTRICAL CHARACTERISTICS

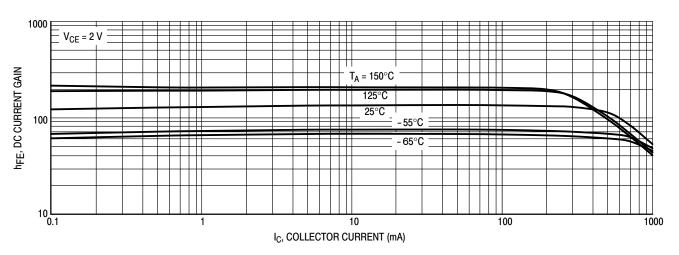


Figure 1. DC Current Gain

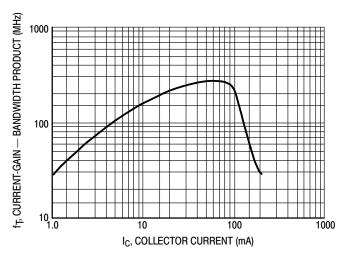


Figure 2. Current-Gain - Bandwidth Product

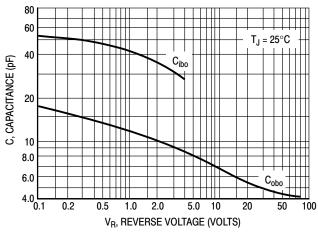


Figure 3. Capacitance

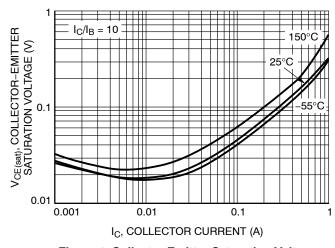


Figure 4. Collector Emitter Saturation Voltage vs. Collector Current

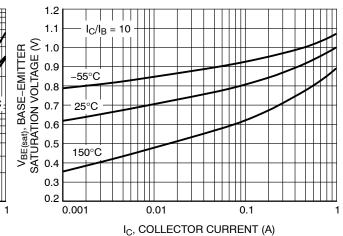


Figure 5. Base Emitter Saturation Voltage vs.
Collector Current

TYPICAL ELECTRICAL CHARACTERISTICS

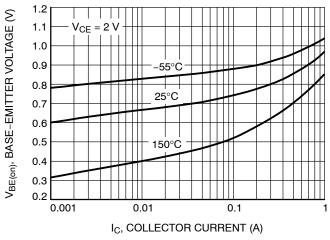


Figure 6. Base Emitter Voltage vs. Collector Current

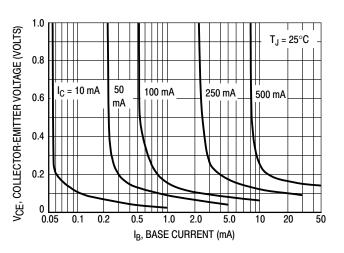


Figure 7. Collector Saturation Region

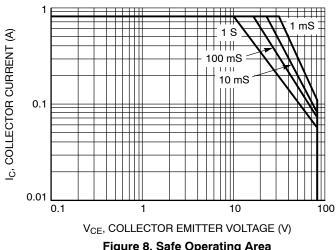


Figure 8. Safe Operating Area

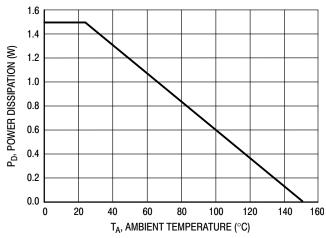


Figure 9. Power Derating Curve

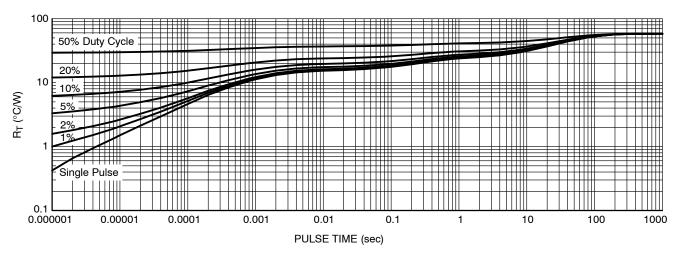
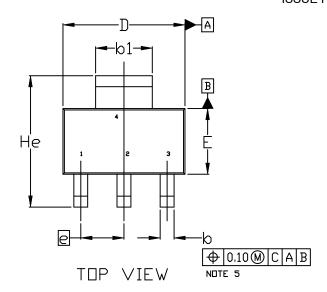
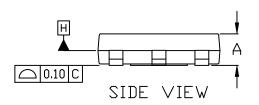
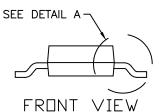
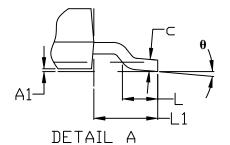


Figure 10. Thermal Response

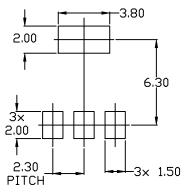

ORDERING INFORMATION


Device	Marking	Package	Shipping [†]	
BCP56T1G	ВН	SOT-223		1000 / Tape & Reel
SBCP56T1G*		(Pb-Free)		
BCP56T3G	ВН	SOT-223 (Pb-Free)	4000 / Tape & Reel	
SBCP56T3G*				
BCP56-10T1G	BH-10	SOT-223 (Pb-Free)	1000 / Tape & Reel	
SBCP56-10T1G*				
BCP56-10T3G	BH-10		4000 / Tape & Reel	
NSVBCP56-10T3G*		(Pb-Free)		
BCP56-16T1G	BH-16	SOT-223 (Pb-Free)	1000 / Tape & Reel	
SBCP56-16T1G*				
BCP56-16T3G	BH-16	SOT-223	4000 / Tape & Reel	
SBCP56-16T3G*		(Pb-Free)		


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.


PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE R



NDTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
 MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.200MM PER SIDE.
- 4. DATUMS A AND B ARE DETERMINED AT DATUM H.
- 5. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.
- 6. POSITIONAL TOLERANCE APPLIES TO DIMENSIONS 6 AND 61.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	1.50	1.63	1.75	
A1	0.02	0.06	0.10	
b	0.60	0.75	0.89	
b1	2.90	3.06	3.20	
c	0.24	0.29	0.35	
D	6.30	6.50	6.70	
Ε	3.30	3.50	3.70	
е	2.30 BSC			
L	0.20			
L1	1.50	1.75	2.00	
He	6.70	7.00	7,30	
θ	0*		10°	

RECOMMENDED MOUNTING FOOTPRINT

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative